Please check the examination details below before	re entering your candidate information
Candidate surname	Other names
Centre Number Candidate Number	
Pearson Edexcel Internat	ional Advanced Level
Monday 20 January 20	25
Afternoon (Time: 1 hour 20 minutes) Pap	er WPH16/01
Physics	
International Advanced Level UNIT 6: Practical Skills in Phys	sics II
You must have: Scientific calculator, ruler	Total Marks

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- Show all your working out in calculations and include units where appropriate.

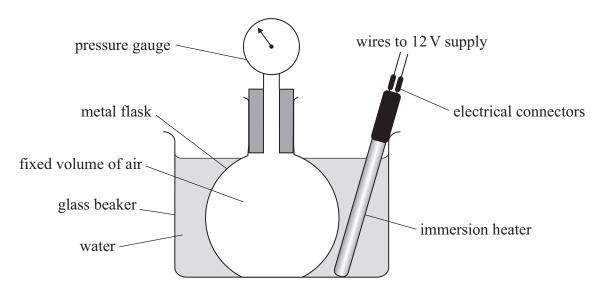
Information

- The total mark for this paper is 50.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- The list of data, formulae and relationships is printed at the end of this booklet.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶



(2)

(3)

Answer ALL questions.

A student investigated the pressure of a fixed volume of air using the apparatus shown.

(a) The student used the immersion heater to heat the water in the beaker.

Identify on	e health	and	safety	issue	and	how	it sho	ould	be	dealt	with.
<i></i>	-										

(b) The student determined the temperature θ of the fixed volume of air.

Describe an accurate method to determine a single value of θ .

(c)	The student recorded θ at a pressure of 110 kPa. He repeated the measurement
	several times as the flask was cooled and reheated.

He recorded the following measurements.

θ / °C	42.5	41.0	42.0	43.5

(i) Determine the mean value of θ .

(1)

Mean $\theta =$

(ii) Determine the percentage uncertainty in the mean value of θ .

(2)

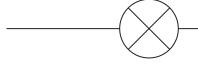
Percentage uncertainty =

(iii) The diameter of the flask was 15 cm.

Determine the number of air molecules in the flask.

You may assume the volume of air is spherical.

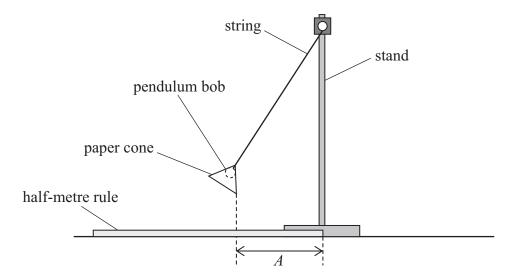
(4)


Number of air molecules =

(Total for Question 1 = 12 marks)

- 2 A student investigated how varying the power input *P* to a 12 V filament bulb affected the brightness of the filament bulb.
 - (a) Complete the circuit diagram for the circuit the student could use in this investigation.

(2)


(Total for C	Question 2 = 8 marks)	
	(6)	
You should include the use of a suitable graph.		
Devise a method to test this prediction.		
where k is a constant.		
$P = kX^4$		
She predicted that the relationship between P and X is given by		
measured <i>X</i> , the light received, in lux, from the filament bulb.		

BLANK PAGE

3 A student investigated the damped oscillations of a pendulum using the apparatus shown.

The paper cone acted as a damper.

The student displaced the cone and allowed the pendulum to oscillate.

He measured the amplitude A every 5 oscillations and recorded the value to the nearest 5 mm.

(a) Give **two** reasons why it would **not** be appropriate to record A to the nearest mm.

.....

(2)

(b) The relationship between A and the number of oscillations n is

$$A = A_0 e^{-\lambda n}$$

where A_0 is the initial amplitude and λ is a constant.

(i) Explain how a graph of $\ln A$ against n can be used to determine the value of λ .

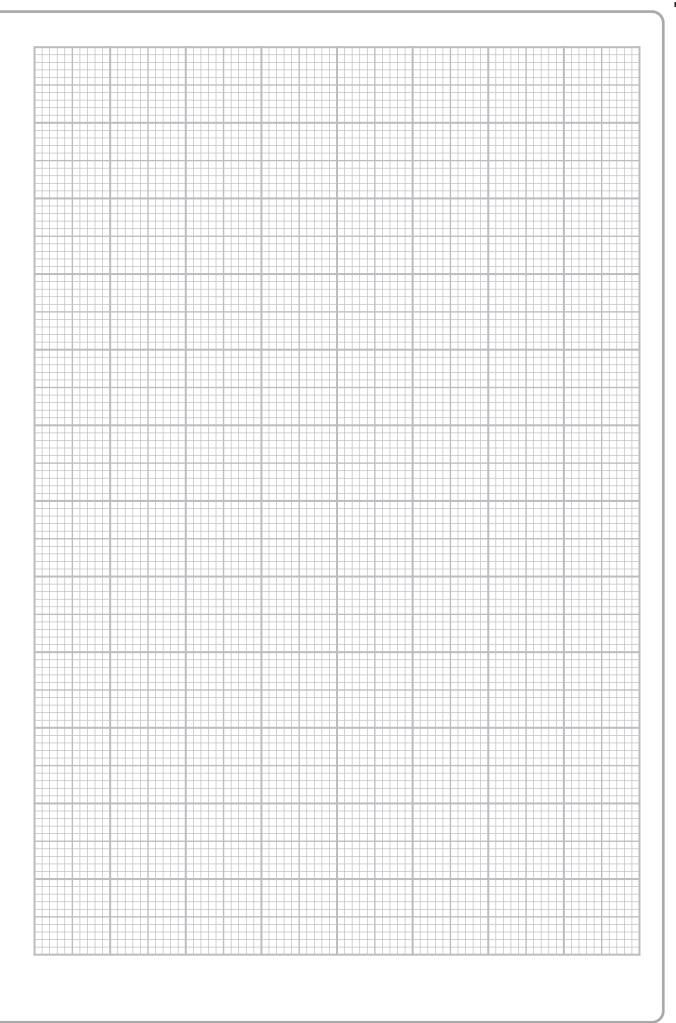
(2)

(ii) The student recorded the following results.

n	A / cm	
5	8.5	
10	7.0	
15	5.5	
20	5.0	
25	4.0	
30	3.5	

Plot a graph of $\ln A$ against n on the grid opposite.

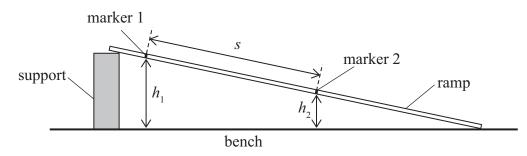
Use the additional column for your processed data.


(5)

(iii) Determine the value of λ from the graph.

(3)

$$\lambda =$$



		(3)
	$A_0 = \dots$	
(v) Explain why the value of A_0 do value of A_0 .	etermined from the graph may not be the	true
(v) Explain why the value of A_0 do value of A_0 .	etermined from the graph may not be the	true (2)
(v) Explain why the value of A_0 do value of A_0 .	etermined from the graph may not be the	
(v) Explain why the value of A_0 do value of A_0 .	etermined from the graph may not be the	
(v) Explain why the value of A_0 do value of A_0 .	etermined from the graph may not be the	
(v) Explain why the value of A_0 do value of A_0 .	etermined from the graph may not be the	
(v) Explain why the value of A_0 do value of A_0 .	etermined from the graph may not be the	

4 A student set up a ramp, as shown.

The student placed two markers, a distance *s* apart, on the ramp.

Not to scale

(a) The student used a metre rule to measure the heights h_1 and h_2 .

She calculated the difference in height Δh as 21 mm \pm 1 mm.

Explain why it was appropriate to record the uncertainty in Δh as 1 mm.

(3)

(b)	The student	placed a	a small	glass	sphere	at marker	1
-----	-------------	----------	---------	-------	--------	-----------	---

She released the sphere and used a stopwatch to measure the time *t* taken for the sphere to reach marker 2. She repeated this several times.

The student moved marker 2 to the lower end of the ramp and repeated the procedure.

Discuss how moving marker 2 to the lower end of the ramp could affect the percentage uncertainty in *t*.

(3)

(c) The time t is related to the acceleration due to gravity g by the formula

$$t^2 = \frac{14s^2}{5g\Delta h}$$

The student recorded the following data

 $s = 90.0 \,\mathrm{cm} \pm 0.1 \,\mathrm{cm}$

 $\Delta h = 21 \,\mathrm{mm} \pm 1 \,\mathrm{mm}$

 $t = 3.36 \,\mathrm{s} \pm 0.03 \,\mathrm{s}$

(i) Determine the student's value of g.

(2)

g =

(ii) Show that the percentage uncertainty in the student's value of g is about 7%.

(3)

(iii) Deduce whether the student's value of g is accurate.

(2)

(Total for Question 4 = 13 marks)

TOTAL FOR PAPER = 50 MARKS

List of data, formulae and relationships

Acceleration of free fall
$$g = 9.81 \text{ m s}^{-2}$$
 (close to Earth's surface)

Boltzmann constant
$$k = 1.38 \times 10^{-23} \text{ J K}^{-1}$$

Coulomb's law constant
$$k = 1/4\pi\varepsilon_0$$

$$= 8.99 \times 10^9 \text{ N m}^2 \text{ C}^{-2}$$

Electron charge
$$e = -1.60 \times 10^{-19} \text{ C}$$

Electron mass
$$m_e = 9.11 \times 10^{-31} \text{ kg}$$

Electronvolt
$$1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$$

Gravitational constant
$$G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$$

Gravitational field strength
$$g = 9.81 \text{ N kg}^{-1}$$
 (close to Earth's surface)

Permittivity of free space
$$\varepsilon_0 = 8.85 \times 10^{-12} \, \mathrm{F \ m^{-1}}$$

Planck constant
$$h = 6.63 \times 10^{-34} \text{ J s}$$

Proton mass
$$m_{\rm p} = 1.67 \times 10^{-27} \, \text{kg}$$

Speed of light in a vacuum
$$c = 3.00 \times 10^8 \text{ m s}^{-1}$$

Stefan-Boltzmann constant
$$\sigma = 5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$$

Unified atomic mass unit
$$u = 1.66 \times 10^{-27} \text{ kg}$$

Unit 1

Mechanics

Kinematic equations of motion
$$s = \frac{(u+v)t}{2}$$

$$v = u + at$$

$$s = ut + \frac{1}{2}at^2$$

$$v^2 = u^2 + 2as$$

Forces
$$\Sigma F = ma$$

$$g = \frac{F}{m}$$

$$W = mg$$

Momentum
$$p = mv$$

Moment of force
$$moment = Fx$$

Work and energy
$$\Delta W = F \Delta s$$

$$E_{\rm k} = \frac{1}{2} m v^2$$

$$\Delta E_{\rm grav} = mg\Delta h$$

Power
$$P = \frac{E}{t}$$

$$P = \frac{W}{t}$$

Efficiency

Materials

Density

Stokes' law $F = 6\pi \eta r v$

Hooke's law $\Delta F = k\Delta x$

Elastic strain energy $\Delta E_{\rm el} = \frac{1}{2} F \Delta x$

Young modulus $E = \frac{\sigma}{\varepsilon}$ where

Stress $\sigma = \frac{F}{A}$

 $\rho = \frac{m}{V}$

Strain $\varepsilon = \frac{\Delta x}{x}$

Unit 2

Waves

Wave speed	$v = f\lambda$
Speed of a transverse wave on a string	$v = \sqrt{\frac{T}{\mu}}$

Intensity of radiation
$$I = \frac{P}{A}$$

Refractive index
$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

$$n=\frac{c}{v}$$

Critical angle
$$\sin C = \frac{1}{n}$$

Diffraction grating
$$n\lambda = d\sin\theta$$

Electricity

Potential difference
$$V = \frac{W}{Q}$$

Resistance
$$R = \frac{V}{I}$$

Electrical power, energy
$$P = VI$$

$$P = I^2 R$$

$$P = \frac{V^2}{R}$$

$$W = VIt$$

Resistivity
$$R = \frac{\rho l}{A}$$

Current
$$I = \frac{\Delta Q}{\Delta t}$$

$$I = nqvA$$

Resistors in series
$$R = R_1 + R_2 + R_3$$

Resistors in parallel
$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$

Particle nature of light

Photon model
$$E = hf$$

Einstein's photoelectric
$$hf = \phi + \frac{1}{2} m v_{\text{max}}^2$$
 equation

de Broglie wavelength
$$\lambda = \frac{h}{p}$$

Unit 4

Further mechanics

Impulse $F\Delta t = \Delta p$

Kinetic energy of a non-relativistic particle $E_{k} = \frac{p^{2}}{2m}$

Motion in a circle $v = \omega r$

 $T=\frac{2\pi}{\omega}$

 $a = \frac{v^2}{r}$

 $a = r\omega^2$

Centripetal force $F = ma = \frac{mv^2}{r}$

 $F = mr\omega^2$

Electric and magnetic fields

Electric field
$$E = \frac{F}{O}$$

Coulomb's law
$$F = \frac{Q_1 Q_2}{4\pi \varepsilon_0 r^2}$$

$$E = \frac{Q}{4\pi\varepsilon_0 r^2}$$

$$E = \frac{V}{d}$$

Electrical potential $V = \frac{Q}{4\pi\varepsilon_0 r}$

Capacitance $C = \frac{Q}{V}$

Energy stored in capacitor $W = \frac{1}{2}QV$

 $W = \frac{1}{2}CV^2$

 $W = \frac{1}{2} \frac{Q^2}{C}$

Capacitor discharge $Q = Q_0 e^{-t/RC}$

Resistor-capacitor discharge

$$I = I_0 \mathrm{e}^{-t/RC}$$

$$V = V_0 e^{-t/RC}$$

$$\ln Q = \ln Q_0 - \frac{t}{RC}$$

$$\ln I = \ln I_0 - \frac{t}{RC}$$

$$\ln V = \ln V_0 - \frac{t}{RC}$$

In a magnetic field

$$F = Bqv \sin \theta$$

$$F = BIl \sin \theta$$

Faraday's and Lenz's laws

$$\mathcal{E} = \frac{-\mathrm{d}(N\phi)}{\mathrm{d}t}$$

Nuclear and particle physics

In a magnetic field

$$r = \frac{p}{BQ}$$

Mass-energy

$$\Delta E = c^2 \Delta m$$

Unit 5

Thermodynamics

Heating $\Delta E = mc\Delta\theta$

 $\Delta E = L\Delta m$

Ideal gas equation pV = NkT

Molecular kinetic theory $\frac{1}{2}m < c^2 > = \frac{3}{2}kT$

Nuclear decay

Mass-energy $\Delta E = c^2 \Delta m$

Radioactive decay $A = \lambda N$

 $\frac{\mathrm{d}N}{\mathrm{d}t} = -\lambda N$

$$\lambda = \frac{\ln 2}{t_{1/2}}$$

$$N = N_0 e^{-\lambda t}$$

$$A = A_0 e^{-\lambda t}$$

Oscillations

Simple harmonic motion F = -kx

 $a = -\omega^2 x$

 $x = A \cos \omega t$

 $v = -A\omega \sin \omega t$

 $a = -A\omega^2 \cos \omega t$

$$T = \frac{1}{f} = \frac{2\pi}{\omega}$$

$$\omega = 2\pi f$$

Simple harmonic oscillator $T = 2\pi \sqrt{\frac{m}{k}}$

$$T = 2\pi \sqrt{\frac{l}{g}}$$

Astrophysics and cosmology

Gravitational field strength
$$g = \frac{F}{m}$$

Gravitational force
$$F = \frac{Gm_1m_2}{r^2}$$

Gravitational field
$$g = \frac{Gm}{r^2}$$

Gravitational potential
$$V_{\text{grav}} = \frac{-Gm}{r}$$

Stefan-Boltzmann law
$$L = \sigma A T^4$$

Wien's law
$$\lambda_{\text{max}} T = 2.898 \times 10^{-3} \,\text{mK}$$

Intensity of radiation
$$I = \frac{L}{4\pi d^2}$$

Redshift of electromagnetic
$$z = \frac{\Delta \lambda}{\lambda} \approx \frac{\Delta f}{f} \approx \frac{v}{c}$$
 radiation

Cosmological expansion
$$v = H_0 d$$

BLANK PAGE

